当前位置: 首页 > 科学研究 > 人才队伍 > 教授 > 正文

科学研究

教授

曲音波

日期:2021-07-28点击:

undefined

曲音波教授

Tel:+86-531-88365954

E-mail:quyinbo@sdu.edu.cn




教育背景

博士起止时间:1983-1986毕业院校:山东大学专业:微生物学

硕士起止时间:1978-1981毕业院校:山东大学专业:微生物学

学士起止时间:1972-1974毕业院校:山东大学专业:工业微生物学




工作经历

1974.8-1978.8山东济宁酿酒厂技术员,技术科长

1981.10-1988.8山东大学微生物研究所助教、讲师

1988.8-1993.9山东大学微生物研究所副教授

1993.9-今山东大学微生物研究所教授、博导

1981.10-1982.9日本大阪大学、研修生

东京大学“国际微生物学研究班”

1993.12-1994.4瑞典隆德大学化学中心应用微生物学系访问学者

1998.10-1999.9日本京都大学大学院应用生命科学专业访问学者


研究方向

木质纤维素微生物降解转化技术




科研项目

国家重点基础研究发展计划(973计划)项目(2011CB707400):木质纤维素资源高效生物降解转化中的关键科学问题研究,2800万元,2011-2015。(首席科学家,并主持课题三真菌游离酶系纤维素降解机理、酶系合成调控与高效酶系重构,701万)

国家自然科学基金重点项目:组学工具解析斜卧青霉纤维素酶系合成调控网络机制研究(31030001):负责人。2011-2014, 212万元。




代表性论文

1. Purification and characterization of a novel cellobiohydrolase (PdCel6A) fromPenicillium decumbensJU-A10 for bioethanol production,Bioresource Technology, 2011, 102: 8339-8342.

2. N-Glycoform Diversity of Cellobiohydrolase I fromPenicillium decumbensand Synergism of Nonhydrolytic Glycoform in Cellulose Degradation, 2012,J Biol Chem, 287(19);15906–15915.

3. Ras GTPases Modulate Morphogenesis, Sporulation and Cellulase Gene Expression in the Cellulolytic FungusTrichoderma reesei, 2012,PLoS ONE, 7(11), e48786,

4. Improved cellulase production via disruption of PDE01641 in cellulolytic fungusPenicillium decumbens,Bioresource Technology123 (2012) 733–737.

5.Genomic and Secretomic Analyses Reveal Unique Features of the Lignocellulolytic Enzyme System ofPenicillium decumbens. 2013,PLoS ONE8(2): e55185.

6. Long-term strain improvements accumulate mutations in regulatory elements responsible for hyper-production of cellulolytic enzymes.Scientific Reports, 2013,3: 1569 | DOI: 10.1038/srep01569.

7. Development of highly efficient, low-cost lignocellulolytic enzyme systems in thepost-genomic era,Biotechnology Advances, 2013, 31 (6)962-975.

8. Promotion of extracellular lignocellulolytic enzymes production by restraining the intracellularβ-glucosidase in Penicillium decumbens,Bioresource Technology, 2013,137 (2013) 33-40

9.Penicillium deumbensBrlA extensively regulates secondary metabolism and functionally associates with the expression of cellulase genes.Appl Microbiol Biotechnol2013 Dec; 97(24):10453-67.

10. Cellodextrin transporters play important roles in cellulase induction in the cellulolytic fungusPenicillium oxalicum.Appl Microbiol Biotechnol. 2013 Dec; 97(24):10479-88.

11. Functional characterization of protein kinase CK2 regulatory subunit regulating Penicillium oxalicum asexual development and hydrolyticenzyme production,Fungal Genetics and Biology, 2014, 66: 44-53.

12.Redesigning the regulatory pathway to enhance cellulase production inPenicillium oxalicum.Biotechnol Biofuels,2015,8:71 doi:10.1186/s13068-015-0253-8.

13.Linker length and flexibility induces new cellobiohydrolase activity of PoCel6A from Penicillium oxalicum,Biotechnol. J. 2015, 10:899–904, DOI 10.1002/biot.201400734

14.Synergistic and Dose-controlled Regulation of Cellulase Gene Expression in Penicillium oxalicum.PLoS Genet,2015. DOI: 10.1371/journal.pgen.1005509.

15.Penicillium oxalicumPoFlbC regulates fungal asexual development and is important for cellulase gene expression.Fungal Genet Biol. 2015 Dec 23; 86: 91-102.

16. Proteomic analysis of the biomass hydrolytic potentials ofPenicillium oxalicumlignocellulolytic enzyme system.Biotechnol Biofuels, 2016, 9: 68. DOI 10.1186/s13068-016-0477-2.

17. Expression and chromatin structures of cellulolytic enzyme gene regulated by heterochromatin protein 1,Biotechnol Biofuels(2016) 9:206.

18. Production of a high-efficiency cellulase complex via β-glucosidase engineering inPenicillium oxalicum.Biotechnol Biofuels,2016,9:78, DOI 10.1186/s13068-016-0491-4.

19. Putative methyltransferase LaeA and transcription factor CreA are necessary for proper asexual development and controlling secondary metabolic gene cluster expression.Fungal Genet Biol.2016, 94: 32-46.

20.The Different Roles ofPenicilliumoxalicumLaeA in the Production of Extracellular Cellulase and β-xylosidase,Frontiers in Microbiology, 2016, 7: 2091.

21.Improving cellulase productivity ofPenicillium oxalicumRE-10 by repeated fed-batch fermentation strategy,Bioresource Technology227 (2017) 155-163.

22. Identifying and overcoming the effect of mass transfer limitation on decreased yield in enzymatic hydrolysis of lignocellulose at high solid concentrations,Bioresource Technology229 (2017): 88–95.

23. An aldonolactonase AltA fromPenicilliumoxalicummitigates the inhibition ofβ-glucosidase during lignocellulose biodegradation,ApplMicrobiolBiotechnol, 2017, 101: 3627-3636.DOI 10.1007/s00253-017-8134-7.

24.Improvement of cellulolytic enzyme production and performance by rational designing expression regulatory network and enzyme system composition,Bioresource Technology245 (2017) 1718-1726.

25.Continuous feeding of spent ammonium sulphite liquor improves the production and saccharification performance of cellulase byPenicillium oxalicum.Bioresource Technology245 (2017): 984-992.

26. Combining manipulation of transcription factors and overexpression of the target genes to enhance lignocellulolytic enzyme production inPenicillium oxalicum,Biotechnol Biofuels, (2017) 10:100. DOI 10.1186/s13068-017-0783-3.

27.Production of sodium gluconate from delignified corn cob residue by on-site produced cellulase and co-immobilized glucose oxidase and catalase.Bioresource Technology248 (2017): 248-257.

28. Constitutive Expression of Chimeric Transcription Factors Enables Cellulase Synthesis under Non-Inducing Conditions inPenicillium oxalicum.Biotechnol. J. 2017, DOI: 10.1002/biot.201700119

29. Production of highly efficient cellulase mixtures by genetically exploiting the potentials of Trichoderma reesei endogenous cellulases for hydrolysis of corncob residues.Microbial Cell Factories, 2017, 16:207.

30. Production of the versatile cellulase for cellulose bioconversion and cellulase inducer synthesis by genetic improvement of Trichoderma reesei.Biotechnology for Biofuels, 2017, 10:272.




获奖情况

“青霉纤维素酶系的酶学研究”国家教委1987年科技进步二等奖(第二位)

“纤维素酶系酶解机制和活力测定方法的研究”山东省1991年科技进步二等奖(第二位)

“纤维素酶制剂”山东省1997年科技进步二等奖(第三位)

“纤维废物液体深层发酵生产纤维素酶”国家教委1997年科技进步一等奖(第一位)

“青霉抗阻遏突变株纤维废物液体深层发酵生产纤维素酶”1998年国家技术发明四等奖(第一位)

“微生物对天然纤维素的降解机制研究”获国家教委1998年科技进步一等奖(第三位)

“麦草浆的生物漂白和酶法改性”2003年山东省技术发明二等奖(第四位)

“生物预处理麦草化学机械法制浆的研究”2004年山东省技术发明二等奖(第二位)

“麦草浆的生物漂白和酶法改性技术”2005年国家科学技术进步二等奖(第二位)

“木糖废渣生产纤维乙醇”,2009年山东省技术发明一等奖(第一位)

“玉米芯废渣制备纤维素乙醇技术与应用”,2011年国家技术发明二等奖(第一位)




所获专利

高活性纤维素酶的制造方法,ZL 96 1 16049.7

利用木聚糖酶改善草浆性能的工艺,ZL 95 1 12261.4

利用玉米芯加工残渣发酵生产纤维素酒精的方法,ZL 2006 1 0131965.X

一种提高纤维素酶和半纤维素酶酶活性的草酸青霉菌株,ZL 201410160118.0

一种胞外醛糖酸内酯酶PoALAC及其应用,ZL2016 1 1056999.7

上一篇:祁庆生

下一篇:生举正